Krivalar Tutorials 
Krivalar Tutorials


Find If a Number is Armstrong Number - Java Program

Armstrong Number is a number in which sum of the n-th power of its digits equals the number. n is the number of digits. For example, 153, 370 and 371 are armstrong numbers

  1. For 3 digit numbers, Number is an Armstrong Number if sum of the cubes of the digits equals the number itself.
  2. For 4 digit numbers, Number is an Armstrong Number if sum of the 4th power of the digits equals the number itself.
  3. For single digit numbers, Number is always an Armstrong Number.
  4. For 2 digit numbers, Number is an Armstrong Number if sum of the square of the digits equals the number itself. However, there is no 2-digit armstrong number.





Armstrong Number Examples

01 = 0
11 = 1
21 = 2

Similarly:
3,4,5,6,7,8,9 are Armstrong Numbers

153 = 13 + 53 + 33
	= 1 + 125 + 27 = 153
370 = 33 + 73 + 23
	= 27 + 343 + 0 = 370
371 = 33 + 73 + 13
	= 27 + 343 + 1 = 371
407 = 43 + 03 + 73
	= 64 + 0 + 343 = 407
1634 = 14 + 64 + 34 + 44
	= 1 + 1296 +  81 + 256 = 1634
8208 = 84 + 24 + 04 + 84
	= 4096 + 16 + 0 + 4096 = 8208
9474 = 94 + 44 + 74 + 44
	= 6561 + 256 + 2401 + 256 = 9474


Armstrong Number - Java Program


import java.util.Scanner;

public class ArmstrongNumber {
 public static void main (String args[]) {
	System.out.println("Enter the Number:");
	Scanner scanner= new Scanner(System.in);
	String sNum =scanner.nextLine();
	int num = Integer.parseInt(sNum);
	System.out.println("num:" + num);
	scanner.close();
	int sum = 0;
	int temp= num;
	while(temp>0) {
		int digit = temp % 10;
		sum=sum + (digit*digit*digit);
		 System.out.println(
		 		"digit:" + digit
		 		+ ",sum:" + sum + " ");

		temp = temp - digit;
		temp = temp / 10;
	}
	if(sum==num) {
		 System.out.println("" + num
		 	+ " is an Armstrong Number");
	}
	else {
		 System.out.println("" + num
		 	+ " is not an Armstrong Number");
	}
 }
}

If the input is 153, Output will be:

153 is an Armstrong Number

If the input is 200, Output will be:

200 is not an Armstrong Number























Searching using Binary Search Tree